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Abstract 

Correlation diagrams depicting the behavior of effective Hamiltonian eigenvalues over 
the ranges of its variables may reveal important properties of the models. The case in which 
a Harailtonian is a sum of two terms, one going to zero in orte limit and the other effectively 
zero in the other limit, is considered here. The electron spin resonance spectrum calculated 
from the spin Hamiltonian of axial gadolinium m is used here as an example. The zero- 
field splitting term of the spin Hamiltonian is expanded in terms of normalized irreducible 
tensorial matrices in order to take advantage of their transformation properües ünder 
rotations. Its eigenvalues are plotted in a correlaUon diagram from the zero-field to the 
high-field limit. A similar correlation diagram for the principal transiUons is used to predAct 
a resonance spectrum. 

1. Introduction 

Energy level correlaüon diagrams are commonly employed in quantum 
chemistry. For  example, Tanabe and Sugano use energy level correlation diagrams [ 1 ] 
to illustrate the effect of  a crystal field on atomic multiplets, although the nonlinear plots 
of  Matsen and Ellzey [2] actually include the limits. Correlation diagrarns for eigen- 
values of  effective Hamiltonians which are sums of  two competing t e r m s -  each 
dominating in different limits - are considered hefe. 

Effective Hamiltonian techniques are well established in the spin-Hamiltonian 
analysis o f  electron spin resonance spectroscopy [3]. Not as common in ESR studies, 
but potentially useful, are energy level correlation diagrams extending from zero magnetic 
field strength to the high-field limit. As an example, the zero-field splitfing of  spin levels 
observed in electron spin resonance spectra o f  axially symmetfic gadolinium III ions is 
treated here. Symmetry  considerafions are efficiently realized by expanding the zero- 
field splitting portion of  the spin Hamiltonian in terms of  normalized irreducible 
tensorial matrices (NITM) [4]. 

This example fits the model of  the effective Hamiltonian with two competing 
terms: one the Zeeman magnetic splitting term and the other a zero-field splitting 
operator. With this model as a guide, an eigenvalue correlation diagram is constructed 
for an operator which is the sum of  two appropriate operators. 

An ESR spectrum is obtained by varying a magnetic field from zero to some large 
value while maintaining an oscillating field. Resonances occur as the Zeeman splitting 
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causes differences between energy levels to match the h v of  the osciUating field. The 
zero-field splitfing is a result of  the environment of the magnetic center. 

Constant energy quantities, such as the h v of the osciUating field, can be indi- 
cated on the diagram by taking them to be pmporüonal to the zero-field splitting 
strength. For the strictly axial model considered here, m s is an exact quantum number 
and the selection rule Am s = +1 holds. By plotting an appmpriate function corre- 
sponding to the resonance field energy, an ESR spectrum is predicted. 

2. G e n e r a l  c o r r e l a t i o n s  

Consider an effective Hamiltonian which can be written as the sum of two terms 

H = u O + v P ,  (2.1) 

where O and P are linear Hermitian operators, and u and v a r e  real scalars corre- 
sponding to physical quanüties. 

There are generally three situations of interest: (1) v negligible with respect to u, 
(2) u comparable to v, and (3) u negligible with respect to v. To make the diagram 
independent of  the parameter values, energy levels may be plotted as multiples of u in 
case (1) and as multiples of v in case (2). Dividing eq. (2.1) by u gives 

H/u  = 0 + (u / v )P .  (2.2) 

The eigenvalues of (2.2) are the energies divided by u, and may be plotted against 
(u /v )  = 0 to 1. Dividing (2.1) by v yields 

H/I~ = (o/u) 0 + P. (2.3) 

The eigenvalues of (2.3) are the energies divided by v, and may be plotted against 
(u/u)  = 1 to 0. Note that u = v at (u /v )  = (v /u)  = 1. The complete correlation diagram 
is constructed in this way. 

The eigenvalues of H/u  or H / v  are not linear functions of (u /v )  or (u/u)  unless 
both O and P are diagonal. Even then, the slopes of the lines at (u /v )  = (v /u)  = 1 are 
usuaUy not continuous due to the change from E/u to E/•. 

In contrast, a correlation diagram generated by plotting the eigenvalues of  the 
operator [5] 

H" = x O  + (1 - x ) P  (2.4) 

as functions of x = 0 to 1 does not exhibit these discontinuities, yet the same values are 
included. Plots against x of  the eigenvalues of H '  are straight lines if both O and P are 
diagonal. Graphing is then a simple matter of  using a straight edge to connect the 
eigenvalues of P on the left with the eigenvalues of O on the right. 
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Despite the different appearances of the correlation diagrams of H and H ' ,  they 
are simply related. For those values of u and u such that 

u + v ;~ 0, (2.5) 

the transformation to H '  is given by 

H "  = H / ( u  + v ) ,  (2.6) 

x = u / (u  + t~), (2.7) 

(1 - x) = v/(u + v), (2.8) 

and the reverse is 

H / u  = H ' / x ,  (2.9) 

H / v  = H ' / ( 1  - x) ,  (2.10) 

u / v  = x / (1  - x).  (2.11) 

3. Spin Hamiltonian of  Gd(IH) 

The ground mulüplet of gadolinium III is fT:sST/z, with seven unpaired f 
electrons and total spin S = 7/2. The conventional model for the ESR spectrum of 
Gd(III) incorporates zero-field splitting but no hyperfine interaction [6] so that the spin 
Hamiltonian is an eight-by-eight effecüve Hamiltonian matrix over the eight spin-7/2 
states. Then 

[H] = [Hz~~n ] + [Hzf~] , (3.1) 

where [ H z ~ ~ ]  is the Zeeman term given by 

[Hz~=~] = flB .g.  [S], (3.2) 

with 13 the Bohr magneton, B the magneüc field, g the g-tensor and IS] the spin vector 
matrix. The zero-field splitting term [ H j  is not zero when B is zero, hence the name. 
The spin energy levels which would be degenerate in the absence of  a magnetic field 
are split into Kramers doublets [7] by the environment of the Gd0II)  ion. 

The entire eight-by-eight spin Hamiltonian can be expanded in terms of  
irreducible tensorial operators [8]. For convenience, the 64 normalized irreducible 
tensorial matrices [4] [n!«)] 7r2, k = 0, 1 . . . . .  7; q = -k ,  - k  + 1 . . . . .  k, are used here. 

. q 

Thelr elements are defined in tenns of 3j symbols [9] according to 
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((3.5)ml In~qk)l (3.5)m2) = ( -1)  (3'5)-rn~ 

× 2kB~-5(_,5 k 3.5). 
ml q m2 

(3.3) 

Nonzero elements of these matrices am tabulated in table 1 for q _> 0. Values for 
negaüve q am obtained using the relation 

[n(kq)]mm , = (-1)-q[n(qk )]m, m . (3.4) 

By the Wigner-Eckart theorem, the NITM are irreducible tensorial operators with 
reduced matrix elements given by 

<SIIn(«)llS) = 4 +  1, (3.5) 

which ensures the orthonormality relations 

(k) T (k')  trace([n~ ] [nq, ]) = 5 ( k , k ' )  6 ( q , q ' ) ,  (3.6) 

where T indicates the transpose. It follows that the expansion coefficients in 

7 
[H] = ~ X'°(k)t"<k)I Z.at-'q t " q  J (3.7) 

k q 

are given by 

Bq (k) = trace([n(qk)]T[H 1). (3.8) 

Since the spin operators correspond to a k = 1 tensorial set, the coefficients B (1) q 
will include the Zeeman contribution to this spin Hamiltonian. If Kramers degeneracy 
is not lifted by the zero-field splitüng, only terms with even k can occur in its expansion 

6 

[ H z f s ] =  ~ ~ ' n ( k ) [ n ( k ) ]  (3.9) / . ~ ~ q  to-q J- 
even k q 

Consequently, it is convenient to use expression (3.2) for the Zeeman term and (3.9) for 
the zero-field splitüng. Originally, expansions used in electron spin resonance studies 
employed Stevens [10] operators, although Buckmaster introduced "Racah" operators 
[11]. Both are irreducible tensorial operators, differing from the NITM only in their 
reduced matrix elements. Differences with this work will therefore be in scaling of the 
parameters. 
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Nonzero elements ofj = 3.5 normalized irreducible tensorial matrices [n (k)] for q > 0. Values for negative 
q are obtained from the relation [n (k)] , = (-1)-q [n (~)] . Fach entr~ is to be divided by the quantity 

- q  m m  q m'rn 
N at the top of its column 

k 0 1 2 3 4 5 6 7 m m" q 

N 2~/2 2442 2442 2466 24154 24546 2466 24858 

1 -7  7 -7  7 -7  1 
1 -5  1 5 -13 23 -5  
1 -3  -3 7 -3  -17 9 
1 -1 -5  3 9 -15 -5 
1 1 -5  -3  9 15 -5  
1 3 -3  -7  -3  17 9 
1 5 1 -5  -13 -23 -5  
1 7 7 7 7 7 1 

-1 -3.5 -3.5 
7 -2.5 -2.5 

-21 -1.5 -1.5 
35 -0.5 -0.5 0 

-35 0.5 0.5 
21 1.5 1.5 
-7 2.5 2.5 

1 3-5 3-5 

N 2421 2421 466 4154 24273 2433 4429 

-47 421 -421 435 -4105 43 -1 
-243 4 -1 -415 845 -247 421 
-415 45 45 -343 -1 435 -4105 

--4 0 243 0 --4415 0 547 
-415 -45 45 343 -1 -435 -4105 
-243 -4 -1 415 845 247 421 

-47 -421 -421 -435 -4105 -43 -1 

-2.5 -3,5 
-1.5 -2.5 
--0.5 -1.5 

0 .5 ,  -0.5 1 
1.5 0.5 
2.5 1,5 
3.5 2.5 

N 2421 2433 2477 2439 466 4286 

47 -435 4105 -435 45 -43 
415 -343 1 343 -421 435 
245 -2 -..443 4 47 -4105 
245 2 --443 --4 47 4105 
415 343 1 -343 -421 -435 

47 435 4105 435 45 43 

-1,5 -3.5 
--0.5 -2.5 

0.5 -1.5 
1.5 -0.5 
2,5 0.5 
3.5 1,5 

N 466 422 478 422 4143 

-47 47 -247 2 -45 
--4 2 1 -47 435 

-245 0 245 0 -347 
-4 -2 1 47 435 

-47 -47 -247 -2 -45 

-0.5 -3.5 
0.5 -2.5 
1.5 -1.5 3 
2.5 -0,5 
3.5 0.5 

N 2411 2413 2411 2413 

47 -421 415 -45 0,5 3.5 
415 -45 -47 421 1.5 -2.5 4 
415 45 -47 -421 2.5 -1.5 

47 421 415 45 3.5 -0.5 

N 426 42 413 

-~/7 1 -43 1.5 -3,5 
-243 0 47 2.5 -2.5 5 

-47 -1 -43 3.5 -1.5 

N 42 42 

1 -1 2.5 -3.5 6 
1 1 3.5 -2.5 

N 1 

-1 3,5 -3.5 7 
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4. Axial fields 

If the symmetry of the zero-field splitting term is axial as, for example, if the ion 
were embedded between two infinite plates, then [Hzf ~] must commute with all rotaüons 
about the high symmetry axis. The NITMs transform under rotaüons according to the 
Wigner-Racah rotation matrices [12] so that by taking the high symmetry axis to be the 
z-axis, only those tensors with q = 0 will remain in the expansion of [H f~]. Since from 
table 1 each NITM with q = 0 is diagonal, the entire zero-field splitfing Hamiltonian is 
diagonal. 

For axial systems, the g-tensor is diagonalized to the terms g,z and g= = gy . In 
the stfictly axial model, the high symmetry z-axis of the g-tensor coincides wi~  the 
z-axis of the zero-field splitüng term. Taking B along the z-axis in the Zeeman term then 

[H] = ~gzz Bz [Sz] + »(2)r"(2h + D(4)r"(4)l + B(06)[n(06)]. u 0  t"s0 J u 0  t»*0 J (4.1) 

This simple model is not entirely unrealistic and the correlation curves are linear 
and easy to plot, yielding insight with minimal effort. This operator can be further 
simplified by taking into account the normalization factors in table 1, 

I ß ]  = Z(2[Sz ]) + b(2)[P], (4.2) 

where 

[P] = [nó )1 + {b(4) /b(2)}[nó  )1 + {b(6)/b(2)}[nò6)], (4.3) 

Z = flgzz Bz/2, (4.4) 

b(2) = Bó2)/(24r~), (4.5) 

0(4) = B(o4)/(2f]-~), (4.6) 

b(6) = B fo6)/(2~/-6-6). (4.7) 

The factor of 2 multiplying [S] is included for convenience in order to avoid the half- 
integer eigenvalues of [S]. 

5. Energy correlation diagram for axial fields 

The energy level correlation diagram is generated by graphing the eigenvalues of 
the operator 

[H "] = x(2[Sz ]) + (1 - x)[P] (5.1) 
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as functions o f x  = 0 to 1. Since both 2[S]  and IP] are diagonal, the eigenvalues are the 
diagonal elements given by 

m s E'(m s) 
-7 /2  x ( -7)  + (1 - x) W(7), 

- 5 / 2  x ( -5)  + (1 - x) W(5), 

- 3 / 2  x ( -3)  + (1 - x) W(3), 

- 1 /2  x ( -1)  + (1 - x) W(1), 

1/2 x (1) + (1 - x) W(1), 

3/2 x (3) + (1 - x) W(3), 

5/2 x (5) + (1 - x) W(5), 

7/2 x (7) + (1 - x) W(7), 

(5.2) 

where the W quantities are the diagonal elements of  [P] and are obtained from table 1 
and the definition of  [P] in (4.3): 

W(1) = -5  + 9(b(4)/b(2)) - 5(b(6)/b(2)), 

W(3) = - 3  - 3(b(4)/b(2)) + 9(b(6)/b(2)), 

W(5) = 1 - 13(b(4)]b(2)) - 5(b(6)[b(2)), 

W(7) = 7 + 7(b(4)/b(2)) + (b(6)]b(2)). 

(5.3) 

Assigning arbitrary, but reasonable, values of  0.05 and 0.008 to the ratlos 
b(4)/b(2) and b(6)/b(2) gives W values of  

W(1) = --4.59, 

W(3) = -3.08, 
W(5)= 0.31, 

W(7) = 7.36. 

(5.4) 

These eigenvalues of  [P] are the intercepts on the x = 0 side o f  the correlaüon diagram 
depicted in fig. 1. The intercepts on the right-hand side of  fig. 1 are the eigenvalues of  
2[S] .  

Since m s is a good quantum number throughout this correlation, the selection n~e 
Am s = + 1 holds for transitions. The seven differences E(m s + 1) - E ( m )  obtained from 
(5.2) are 
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Fig. 1. Plot of  eigenvalues of [H'] = x(2[Sz] ) 
+ (1 - x ) [ P ]  versus x, where [P] is def'med in 
eq. (4.2). The formulas for these functions are 
given in eq. (5.2). For this display, b(4)/b(2) 
= 0.05 and b(6)lb(2) = 0.008. The levels are 
iden~qed by their right-hand side intercepts 
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Fig. 2. Plot of  the differences AE" = E'(rn s + 1) 
- E ' ( m )  of the eigenvalues of [H']  = x(2[S])  
+ ( 1 -  x)[P]. The values and ranges of  all 
variables are the same as in fig. 1. For con- 
venience, the eigenvalues are identified by 2m s. 
The dotted lines represent the values +4(1 - x) 
corresponding to hypothefical resonanceener- 
gies of  hv= +4b(2) for an ESR spectnma. 
Resonance lines occurring where the energy dif- 
ferences are equal to these values are shown along 
the bottom axis. Note that this ~ t r u m  is inde- 
pendent of the sign of the zero-field splitting. 

T r a n s i ü o n  A E '  

- 7 / 2  ~ - 5 / 2  x + (1 - x)  {W(5) - W(7)},  

- 5 / 2  ---) - 3 / 2  x + (1 - x) {W(3) - W(5)},  

- 3 / 2  ---) - 1 / 2  x + (1 - x) {W(1) - W(3)},  

- 1 / 2  ---) 1/2 x + (1 - x) {W(1) - W(1)},  

1/2 ---) 3 /2  x + (1 - x) {W(3) - W(1)},  

3 /2  ---) 5 /2  x + (1 - x) {W(5) - W(3)},  

5 /2  ---) 7 /2  x + (1 - x)  {W(7) - W(5)}.  

(5.5) 

T h e s e  are p lo t ted  in fig. 2 b e t w e e n  the s a m e  l imi ts  as fig. 1. T h e  n e g a t i v e  va lues  are  an  

ar t i fac t  o f  this m e t h o d  since,  for  e x a m p l e ,  the m s = - 7 / 2  level  is ac tua l ly  a b o v e  the  
m s = - 5 / 2  level  unti l  h igh  fields.  
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6. Electron spin resonance correlation diagrams 

For ESR purposes, the magnetic field is increased from zero, inducing resonance 
as various energy level differences, consistent with any selection mies, become equal 
to the h v of an oscillating magnetic field perpendicular to B. By definition (4.4), the 
parameter Z is proportional to the field strength B and varies accordingly. The zero- 
field splitting parameter b(2), however, is a constant for a particular system. 

In order to interpret the energy level correlation diagrams in figs. 1 and 2 for 
electron spin resonance spectroscopy, eq. (5.1) is compared to eq. (4.2). Assuming 
Z + b ( 2 ) ,  0, which is valid for all Z if b(2) > 0, the quantities are related by 

and 
[H'] = [H]/(Z + b(2)) 

x = Z/(Z + b(2)). 

(6.1) 

(6.2) 

The variation of x from 0 to 1 therefore corresponds to the variation of  Z from 0 to 
infinity. A negative value of b(2) can be handled by changing the sign of [Pl. 

It is convenient to specify energy quantities in units of  the constant b(2). For 
example, if a particular value of Z is Z = kb(2), then the corresponding value of x is 
x = k/(1 + k). The energies of the original spin Hamiltonian in units of  b(2) are given 
in terms of  [H'] and x by 

[H]/b(2) = [H']/(1 - x). (6.3) 

A constant energy E = cb(2) becomes the straight line E '  = c(1 - x). In fig. 2, dashed 
lines AE" = +4(1 - x )  corresponding to AE = +4b(2) are displayed. A resonance would 
be observed at a value of x for which a transition cmsses one of  these dashed lines. The 
negative values are necessary to include the negative transiüons mentioned in the 
previous section. 

7. Discussion 

The two techniques of tensorial expansion and eigenvalue correlation are useful 
in the construcüon and analysis of  effective Hamiltonian models. The NITM is an 
efficient tool for incorporating tensor analysis, the Wigner-Eckart  theorem and sym- 
metry constraints. 

In general, eigenvalues of an effective Hamiltonian are classified according to 
their behavior in different regions of the parameter ranges. The axial ESR spin 
Hamiltonian considered here is simple, but the correlation diagrams re~¢eal the inJinite 
field behavior of  the spin states. It would be logical to study next the correlaüons for 
a nondiagonal [H'] as, for example, in the case of a magnetic field at a nonzero angle 
to the high symmetry axis of  an axial zero-field splitting term. 
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In fig. 2, the inverse Z mapping of the right-hand side region is an advantage in 
determining possible transitions at very high fields; however, it fails to give a realistic 
depicüon of the splitting due to the compression of the high field values. Except for the 
5/2 ---> 7/2 absorption, a linear plot would show that the spacing of the resonances with 
respect to the magnetic field (Z) is proportional to their zem-field splitting. 

Otherwise, the correlation diagrams presented here have a number of advantages, 
including simplicity of graphing, ease of extrapolation and convenient application to 
specific models. 
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